热搜: 食品  奶粉  烟台  海产品  保健品  周黑  黑窝点  黑作坊  全聚德  小龙虾 
 
当前位置: 首页 » 检测应用 » 食品生产管理 » 生产技术 » 正文

不同种类肉肌浆蛋白的油-水界面性质

放大字体  缩小字体 发布日期:2020-04-10
核心提示:开发新的食物原料并研究其加工特性势在必行。在肉糜生产加工过程中为去除肉腥味以及提高肌原纤维蛋白的凝胶性质,有时会去除肌浆蛋白,造成大量的浪费。而畜禽肉在冷藏期间的汁液流失,也含有大量的肌浆蛋白。以往对于肌浆蛋白的研究多集中在其对于凝胶类肉制品的影响上。
  开发新的食物原料并研究其加工特性势在必行。在肉糜生产加工过程中为去除肉腥味以及提高肌原纤维蛋白的凝胶性质,有时会去除肌浆蛋白,造成大量的浪费。而畜禽肉在冷藏期间的汁液流失,也含有大量的肌浆蛋白。以往对于肌浆蛋白的研究多集中在其对于凝胶类肉制品的影响上。
 
  近年来,科研人员进一步挖掘肌浆蛋白的功能性,发现肌浆蛋白作为食品原料具有潜在应用价值,但针对不同种类动物肌浆蛋白界面性质的深入研究十分匮乏。南京农业大学肉品加工与质量控制教育部重点实验室的杜菲菲、吴长玲和王鹏*等人对猪肉、鸡肉和鱼肉肌浆蛋白的油-水界面性质进行了研究,并探究3 种蛋白的结构不同与功能差异的相关性,以期给相关研究人员提供借鉴。
 
  3 种肉肌浆蛋白的氨基酸组成分析
 
  蛋白质在油-水界面稳定性的诸多影响因素中,蛋白质暴露于界面的氨基酸组成不容忽视,特别是苯丙氨酸和酪氨酸这些疏水性极强的氨基酸,对保持蛋白质三级结构也起着重要作用。结果显示,鸡肉肌浆蛋白中这两种氨基酸含量最高,且与其他两种肌肉肌浆蛋白间有显着性差异(P<0.05)。
 
  肌浆蛋白的基本理化指标测定结果分析
 
  结果显示,对于相同条件提取的蛋白,鱼肉肌浆蛋白溶解度显着最大达到(16.74±0.39)mg/mL(P<0.05),而猪肉肌浆蛋白与鸡肉肌浆蛋白均在9.5~10.6 mg/mL之间,后面的二者间溶解度无显着差异(P>0.05)。从粒径的角度看,大粒径极大可能在空间产生位阻,进而削弱表面疏水性的提高带来的扩散速率增加。鸡肉肌浆蛋白的粒径为(231.7±7.74)nm,相对稍大于其他两种肌浆蛋白,但是整体无显着差异(P>0.05),这一现象与吸附动力学具有理论关联性。蛋白质电位是衡量体系稳定性的重要指标,因为它不仅反映颗粒所带电荷的大小,而且还能表征颗粒间相互作用的强弱,Zeta电位越高,即所带电荷数越多,体系就越稳定。
 
  3 种肉肌浆蛋白Zeta电位分别为(-12.65±1.39)、(-13.64±1.57)、(-15.64±1.99)mV左右,其中鱼肉肌浆蛋白的Zeta电位相对于其他两种蛋白显着较高(P<0.05),Zeta电位不仅影响着肌浆蛋白质分子间的相互作用,而且在蛋白质的凝胶及乳化方面也有着显着性的影响。
 
  结果显示,鸡肉肌浆蛋白中这两种氨基酸含量都要高于其他两种肌浆蛋白,所以这也很好地解释了鸡肉肌浆蛋白的表面疏水性在3 种肌浆蛋白中最大。3 种肌浆蛋白热变性温度都较低,在40~55 ℃之间,其中鱼肉肌浆蛋白变性温度最高而猪肉肌浆蛋白最低,且猪肉肌浆蛋白热变性温度与鸡肉和鱼肉间差异显着(P<0.05),而鸡肉与鱼肉肌浆蛋白间的变性温度无显着性差异。所以在肌浆蛋白的研究中,如何根据不同蛋白的变性温度差异,准确控制热处理的强度至关重要,本研究可给蛋白变性凝聚组装类的研究提供基础数据的参考。
 
  蛋白质构象稳定性的结构分析
 
  本实验主要利用盐酸胍诱导蛋白质变性,从而探究在不同处理时间下蛋白质构象的动态变化,盐酸胍的加入能破坏蛋白质的氢键、疏水键等,进而能破坏蛋白质的高级结构。本研究对于揭示不同蛋白乳化特性差异有很重要的作用。盐酸胍诱导肌浆蛋白变性的荧光光谱显示,3 种肌浆蛋白都在290 nm波长处达到最大吸光度,由于酪氨酸主要对250~290 nm波长范围内具有吸收。由肌浆蛋白氨基酸组成可知,鸡肉肌浆蛋白的酪氨酸含量最高,这也解释了在第0分钟时鸡肉肌浆蛋白的吸光度相比较而言达到最大。而且猪肉和鱼肉肌浆蛋白在第120分钟时达到最大吸光度,这说明肌浆蛋白三级结构改变时,构象发生重排且构象展开,而鸡肉肌浆蛋白在第120分钟时吸光度有所下降,说明鸡肉肌浆蛋白结构改变较快。结果显示,随着时间的延长,构象变化速率越来越小,并且在相同时间下,猪肉肌浆蛋白与鸡肉肌浆蛋白的峰值变化速率无显着差异(P>0.05),而鱼肉肌浆蛋白峰值变化速率相比较而言显着较慢(P<0.05)。这一结果表明,和鱼肉肌浆蛋白相比,猪肉和鸡肉的肌浆蛋白构象柔顺性更好。
 
  肌浆蛋白界面吸附动力学分析
 
  本研究中,动态界面张力通过界面压力随吸附时间的变化表示,表面张力是由缓冲液的界面张力减去蛋白的界面张力所得。用直线的斜率表示扩散速率,柱状图即为吸附动力学特征参数。从图2可以明显看出,随着吸附时间的延长,界面压力增大,表明蛋白质逐渐吸附到油-水界面,并且在最初的5 min内3 种肌浆蛋白的界面压力快速增加。其中猪肉肌浆蛋白的界面压力在初期增长显着高于其他两种肌浆蛋白,这一现象的发生可能是由于猪肉肌浆蛋白的疏水性高于其他两者,表面疏水性是影响蛋白质对界面油侧吸附的关键因素之一。此后3 种肌浆蛋白界面压力值的增长趋缓,且鸡肉肌浆蛋白的界面压力始终大于其他两者,而猪肉肌浆蛋白界面压力最低。当吸附时间达到180 min后,界面压力趋于稳定,表明吸附基本达到平衡。在界面压力π值增加的起始阶段,界面上蛋白质浓度较低,吸附动力学受扩散作用的影响,遵循变形后的Ward和Tordai扩散模型所描述的π随吸附时间的变化,如下式所示:
 
  由图2可知,不同种类肌浆蛋白的动力学扩散速率间存在差异性。蛋白质分子在界面上的扩散速率受其粒径大小的影响,而本实验结果更能解释这一现象。在前述理化指标中,粒径大小为鸡肉肌浆蛋白>猪肉肌浆蛋白>鱼肉肌浆蛋白,而在本部分扩散速率大小为鸡肉肌浆蛋白<猪肉肌浆蛋白<鱼肉肌浆蛋白。这可能是由于大粒径的肌浆蛋白产生的空间位阻在一定程度上削弱了表面疏水性提高带来的吸附速率增加。而且鱼肉肌浆蛋白的扩散速率较猪肉和鸡肉肌浆蛋白间显着较大(P<0.05),但鸡肉与猪肉肌浆蛋白之间的扩散速率却无显着性差异(P>0.05)。
 
  肌浆蛋白乳化活性及乳化稳定性
 
  对于不同肉类同种蛋白,表面特性和构象特性的差异会引起乳化活性和乳化稳定性的不同。鸡肉肌浆蛋白乳化活性最高,猪肉肌浆蛋白乳化活性稍低于鸡肉但无显着差异性(P>0.05),但是鱼肉肌浆蛋白乳化活性显着低于猪肉和鸡肉肌浆蛋白(P<0.05),这一结论与蛋白构象稳定性结果相符合。在盐酸胍诱导蛋白变性时,随时间的增加使其形成刚性结构,这正是导致鱼肉肌浆蛋白的峰值变化速率相比较猪肉和鸡肉而言差异性显着且其乳化活性较低的原因。鸡肉肌浆蛋白的稳定性相对于猪肉肌浆蛋白有所下降但差异性不显着,粒径可能是导致鸡肉肌浆蛋白稳定性变差的原因。而3 种肌浆蛋白中鱼肉肌浆蛋白的乳化稳定性显着最差(P<0.05),这可能与鱼肉肌浆蛋白的构象稳定性相对较差有关。
 
  不同种类肉肌浆蛋白各指标的主成分分析
 
  由于测量指标间存在线性相关性,单一的指标不能更清楚地反映出不同种类肉肌浆蛋白间的差异性,因此进一步进行主成分分析。由图4A可知,第1主成分占59.31%,第2主成分占10.02%,总共占比69.33%,其中样本F10、F11以及F12对第1主成分贡献率较大,且与第1主成分呈正相关,而C7样本对第2主成分贡献率较大且呈正相关。由图4B可知,肌浆蛋白的扩散速率、溶解度、乳化活性、乳化稳定性、表面疏水性、电位、构象在30 min及60 min时的变化速率对第1主成分贡献率较大,其中扩散速率和溶解度与第1主成分呈正相关,而除此以外的其他指标与第1主成分呈负相关。而蛋白的构象在90 min以及120 min时的变化速率对第2主成分的贡献率较大。图中的乳化活性、表面疏水性、乳化稳定性及电位间距离较近,说明这些指标间存在一定的相关性。综合前述的研究结论可知肌浆蛋白的乳化活性和乳化稳定性与其表面疏水性、电位和构象变化速率有较强的相关性,而扩散速率与溶解度间相关性较强。
 
  结    论
 
  本实验以猪肉、鸡肉及鱼肉的肌浆蛋白为研究对象,通过测定其理化性质、氨基酸组成、蛋白质构象、界面性质以及乳化性质进而深入了解其油-水界面的性质。研究结果表明:不同种类肉的肌浆蛋白其理化性质、氨基酸组成、蛋白质构象、界面性质以及乳化性质都有一定的差异性。
 
  肌浆蛋白中氨基酸组成、粒径和变性温度等都显着影响蛋白疏水性,其中鸡肉肌浆蛋白中酪氨酸和苯丙氨酸含量较高以致疏水性高于其他两种肌浆蛋白,而3 种肉肌浆蛋白的粒径间无显着差异,但猪肉肌浆蛋白与鸡肉肌浆蛋白和鱼肉肌浆蛋白间有显着差异。
 
  对于盐酸胍诱导的蛋白质构象稳定性,当肌浆蛋白三级结构改变时,构象发生重排且构象展开,鱼肉肌浆蛋白峰值变化速率相比较而言显着较慢,说明猪肉与和鸡肉的肌浆蛋白结构构象相对于鱼肉肌浆蛋白柔顺性更强。
 
  肌浆蛋白的吸附动力学实验表明鱼肉肌浆蛋白的扩散速率较猪肉和鸡肉肌浆蛋白间显着较大,这可能是由于大粒径的肌浆蛋白产生的空间位阻在一定程度上削弱了表面疏水性的提高带来的吸附速率的增加,但鸡肉与猪肉肌浆蛋白之间的扩散速率却无显着性差异。
 
  实验结果还表明,鸡肉肌浆蛋白乳化活性最高,鱼肉肌浆蛋白乳化活性显着低于猪肉和鸡肉肌浆蛋白,猪肉肌浆蛋白乳化活性稍低于鸡肉但无显着差异性,这可能是由于肌浆蛋白粒径及构象的不同造成的。但鱼肉肌浆蛋白的乳化稳定性显着最差。
 
  本研究以分子间作用力及分子结构分析和界面流变研究作为有力工具,揭示肌浆蛋白纳米颗粒的界面吸附动力学规律。围绕这个中心可再进行深入研究,例如利用乳液替代食品中饱和脂肪的功能性食品等,利用肌浆蛋白纳米颗粒皮克林乳液调控脂肪消化,为功能性食品的开发提供理论依据。
 
 
[ 检测应用搜索 ]  [ 加入收藏 ]  [ 告诉好友 ]  [ 打印本文 ]  [ 违规举报 ]  [ 关闭窗口 ]

 
0条 [查看全部]  相关评论

 
推荐图文
推荐检测应用
点击排行
  

鲁公网安备 37060202000213号